Monotone Real Analytic Maps Which are Not Homeomorphisms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homeomorphisms Which Are Dehn Twists on the Boundary

A homeomorphism of a 3-manifold M is said to be Dehn twists on the boundary when its restriction to ∂M is isotopic to the identity on the complement of a collection of disjoint simple closed curves in ∂M . In this paper, we give various results about such collections of curves and the associated homeomorphisms. In particular, if M is compact, orientable, irreducible and ∂M is a single torus, an...

متن کامل

Invariant Measures for Real Analytic Expanding Maps

Let X be a compact connected subset of Rd with non-empty interior, and T : X → X a real analytic full branch expanding map with countably many branches. Elements of a thermodynamic formalism for such systems are developed, including criteria for compactness of transfer operators acting on spaces of bounded holomorphic functions. In particular a new sufficient condition for the existence of a T ...

متن کامل

Monotone Periodic Orbits for Torus Homeomorphisms

Let f be a homeomorphism of the torus isotopic to the identity and suppose that there exists a periodic orbit with a non-zero rotation vector ( q , r q ). Then f has a topologically monotone periodic orbit with the same

متن کامل

Why Maps Are Not Propositional ∗

Why Maps Are Not Propositional∗ A number of philosophers and logicians have argued for the conclusion that maps are logically tractable modes of representation by analyzing them in propositional terms. But in doing so, they have often left what they mean by ‘propositional’ undefined or unjustified. I argue that propositions are characterized by a structure that is digital, universal, asymmetric...

متن کامل

A Partial Order Where All Monotone Maps Are Definable

It is consistent that there is a partial order (P,≤) of size א1 such that every monotone function f : P → P is first order definable in (P,≤) It is an open problem whether there can be an infinite lattice L such that every monotone function from L to L is a polynomial. Kaiser and Sauer [KS] showed that such a lattice would have to be bounded, and cannot be countable. Sauer then asked the weaker...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1975

ISSN: 0002-9939

DOI: 10.2307/2039879